Induction of a less aggressive phenotype in human colon carcinoma HCT116 cells by chronic exposure to HDAC inhibitor SAHA.

نویسندگان

  • Alessandro Bressan
  • Mario Bigioni
  • Daniela Bellarosa
  • Federica Nardelli
  • Clelia Irrissuto
  • Carlo Alberto Maggi
  • Monica Binaschi
چکیده

Histone deacetylase inhibitors (HDACis) are anticancer molecules that epigenetically modulate cell functions. Chronic exposure of HCT116 colon cancer cells to SAHA has been investigated for a better understanding of resistance mechanisms but, surprisingly, a less aggressive tumor phenotype both in vitro and in vivo was obtained after exposure to increasing concentrations of SAHA. Indeed, HCT116/SAHA cells when injected into nude mice showed a reduced engraftment and growth with respect to HCT116 cells. This difference was not observed inoculating the cells into NOD/SCID mice that, differently from nude mice, lack NK activity, thus suggesting the involvement of the native immune response in impairment of HCT116/SAHA cell growth. In agreement with this result, a growing induction of NKG2D ligand expression, MICA and MICB, that are molecular mediators of NK cell killing, was confirmed in HCT116/SAHA chronically exposed to SAHA. A reduced clonogenic efficiency was also observed in HCT116/SAHA with respect to HCT116 cells. Interestingly, even after chronic exposure to SAHA, HCT116/SAHA cells developed only a moderate resistance to SAHA both in vitro and in vivo and they acquired a collateral sensitivity to anthracyclines. These results are of note and probably rely on the fact that, having simultaneously many different targets, HDACis would require many different mutations to display high resistance index. Moreover, to understand the molecular basis of HCT116/SAHA cell phenotype a gene expression profile of cancer genes was evaluated in HCT116 incubated with SAHA for 24 h and in HCT116/SAHA cells to identify selectively regulated genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pathway for Antitumor Effects Induction of Polyploidy by Histone Deacetylase Inhibitor: A

Histone deacetylase (HDAC) inhibitors can induce various transformed cells to undergo growth arrest and/or death. Suberoylanilide hydroxamic acid (SAHA) is an HDAC inhibitor which is in phase I/II clinical trials and has shown antitumor activity in hematologic and solid tumors at doses well tolerated by patients. HDAC is the target for SAHA, but the mechanisms of the consequent induced death of...

متن کامل

Induction of polyploidy by histone deacetylase inhibitor: a pathway for antitumor effects.

Histone deacetylase (HDAC) inhibitors can induce various transformed cells to undergo growth arrest and/or death. Suberoylanilide hydroxamic acid (SAHA) is an HDAC inhibitor which is in phase I/II clinical trials and has shown antitumor activity in hematologic and solid tumors at doses well tolerated by patients. HDAC is the target for SAHA, but the mechanisms of the consequent induced death of...

متن کامل

MLH1 protects from resistance acquisition by the histone deacetylase inhibitor trichostatin A in colon tumor cells.

The antineoplastic activity of HDAC inhibitors is an unquestionable property of these compounds, but recent studies in tumor cells have revealed the potential of HDAC inhibitors (e.g., suberoylanilide hydroxamic acid SAHA, valproic acid VPA) to cause acquisition of HDAC inhibitor resistance. We report that trichostatin A (TSA), an HDAC inhibitor structurally related to SAHA, causes the acquisit...

متن کامل

Induction of Sodium/Iodide Symporter (NIS) Expression and Radioiodine Uptake in Non-Thyroid Cancer Cells

BACKGROUND This study was designed to explore the therapeutic potential of suppressing MAP kinase and PI3K/Akt pathways and histone deacetylase (HDAC) to induce the expression of sodium/iodide symporter (NIS) and radioiodine uptake in non-thyroid cancer cells. METHODS We tested the effects of the MEK inhibitor RDEA119, the Akt inhibitor perifosine, and the HDAC inhibitor SAHA on NIS expressio...

متن کامل

In vitro toxicological assessment of MgO and Silica Nanoparticle in human colon carcinoma cells

The use of nanoparticles (NPs) has been extended to many fields such as agriculture, food industry, medicine and biotechnological fields. Thereby, human exposure to NPs consequently increases. Therefore, there is a concern about the potential biological effects and toxicity of NPs for humans and the environment. This study aimed to investigate the cytotoxicity effects of magnesium oxide (MgO) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oncology reports

دوره 24 5  شماره 

صفحات  -

تاریخ انتشار 2010